Posts

Worldwide Certification Guide for Power Conversion Systems (PCS)

Worldwide Certification Guide for Power Conversion Systems (PCS)

PCS Certification Guide: In the booming Battery Energy Storage System (BESS) market, the Power Conversion System (PCS) plays a crucial role. It acts as the bidirectional bridge between batteries, renewable energy sources, and the electrical grid—converting DC to AC and vice versa.

However, no PCS can be legally sold or installed without meeting strict certification requirements. These certifications ensure:

  • Safety – Protecting operators, assets, and the grid.
  • Compliance – Meeting local and international regulations.
  • Market Access – Enabling entry into global markets without costly redesigns.

This guide breaks down worldwide PCS certification requirements, region by region, so manufacturers, EPCs, and integrators know exactly what’s needed.


1. What Is a Power Conversion System (PCS)?

A Power Conversion System is a high-efficiency electronic converter that:

  • Converts DC from batteries/PV to AC for the grid or loads.
  • Converts AC from the grid to DC for battery charging.
  • Supports grid stability functions such as frequency control and voltage regulation.

If the BESS is the body, the PCS is the heart that pumps energy where it’s needed.


2. Worldwide PCS Certification Requirements

A. International Certifications

StandardScopeWhy It Matters
IEC 62109-1 & 62109-2Safety of power converters for PV and ESSEnsures PCS meets operator and installer safety
IEC 62477-1Safety for power electronic convertersCovers high-power PCS in BESS
IEC 61000 SeriesEMC compliancePrevents harmful interference
ISO 9001:2015Quality managementEnsures consistent production quality
IEC CB SchemeMutual recognition of test resultsAvoids repeated testing for multiple markets

B. North America

StandardScopeNote
UL 1741 & UL 1741 SBInverters, converters, controllers for DERUL 1741 SB aligns with IEEE 1547-2018
IEEE 1547 & 1547.1Grid interconnectionMandatory for PCS grid connection
CSA C22.2Safety requirements for CanadaHarmonized with UL standards

C. Europe

StandardScopeNote
EN 50549-1 / -2Generating plant requirementsCovers PCS grid integration
EN 62477-1Safety for power electronicsRequired for high-voltage PCS
EN 61000EMC compliancePrevents interference
G99 (UK)Grid code complianceUK-specific requirement

D. Australia & New Zealand

StandardScopeNote
AS/NZS 4777.2Grid-connected inverter requirementsIncludes PCS
RCM MarkEMC & safetyRequired before market entry

E. South Africa

StandardScopeNote
NRS 097-2Grid connection rulesAddresses voltage, frequency, harmonics

F. China

StandardScopeNote
GB/T 34120 & GB/T 34133PCS safety & performanceRequired for ESS & PCS
GB/T 29319EMC standardsLocal testing required

G. India

StandardScopeNote
BIS IS 16221 & IS 16270PCS safetyMandatory BIS registration
CEA Grid CodeInterconnection rulesAdapted for Indian grid

H. Japan

StandardScopeNote
JIS C 8961 & C 8999PCS performance & safetyJapanese Industrial Standards
JET CertificationElectrical & performance safetyRequired for PCS sales
PPSA ComplianceGrid approvalUtility-specific process

I. South Korea

StandardScopeNote
KS C 8567 / KS C 8568PCS safety standardsKorean Standards
KC MarkEMC & safetyMandatory product mark
KEPIC / KERI TestingGrid complianceOverseen by KESCO

J. Southeast Asia

Thailand

StandardScopeNote
TISI CertificationPCS safetyThailand Industrial Standards Institute
MEA/PEA Grid CodeUtility approvalFor PCS connection to the grid

Singapore

StandardScopeNote
SPRING / Enterprise SGElectrical safetyNational compliance mark
EMA Grid ConnectionEnergy Market Authority approvalRequired for grid-tied PCS

Indonesia

StandardScopeNote
SNI CertificationIndonesian National StandardSafety & quality compliance
PLN Grid CodeUtility connection rulesApproval from PLN

K. Middle East

United Arab Emirates (UAE)

StandardScopeNote
ESMA CertificationSafety & EMCEmirates Authority
DEWA / ADWEA Grid CodeUtility complianceGrid-tied PCS requirement

Saudi Arabia

StandardScopeNote
SASO CertificationSafety & qualitySaudi Standards Org.
SEC Grid ConnectionUtility approvalSaudi Electricity Company rules

Qatar, Oman, Kuwait

  • Typically adopt IEC standards + local utility grid codes.

L. Latin America

CountryStandardNote
BrazilINMETRO + ONS Grid CodeSafety & grid compliance
ChileSEC Approval + Grid CodeEnergy regulatory approval
MexicoNOM + CFE Grid RulesSafety & interconnection

3. International Certification Pathways

The IECEE CB Scheme simplifies global compliance:

  • Test once in a CB-certified lab.
  • Use the report for multiple country approvals.
  • Cuts time-to-market significantly.

4. PCS Certification Process

  1. Identify Target Markets
  2. Match Applicable Standards
  3. Pre-Test in Internal Lab
  4. Submit to Accredited Testing Body
  5. Receive Certificates
  6. Maintain Compliance via periodic re-testing.

5. Challenges & Future Trends

Challenges

  • Varying grid codes by region
  • Rapid updates to standards (e.g., IEEE 1547)
  • New cybersecurity requirements

Trends

  • Cybersecurity Compliance (IEC 62443)
  • Green Certification Labels
  • Gradual harmonization of standards globally

Conclusion

The PCS is the gateway between your Battery energy storage system and the grid—but without the right certifications, it’s just an expensive box.
By understanding global PCS requirements early, manufacturers and integrators can avoid delays, reduce costs, and enter multiple markets faster.