Posts

The Global BESS Market

The Global BESS Market: Projected Growth to 500 GW by 2031 and the Rising Importance of Safety Certification

Global BESS Market Forecast to 2031

The global BESS market is projected to grow exponentially, reaching 500 GW by 2031. This forecast is a reflection of the world’s transition toward clean energy, electrification, and grid modernization. Battery Energy Storage Systems (BESS) are no longer niche technologies—they are becoming central to the stability and flexibility of modern energy networks.

But with such rapid deployment, BESS safety certification has emerged as a critical factor. Without strong certification standards, the risks of fire, explosion, or system failure increase. These risks not only threaten energy reliability but also create challenges for regulators, insurers, and investors.

In this article, we explore the drivers of global BESS market growth, the importance of safety certification, and the frameworks shaping the future of energy storage systems.


Why the Global BESS Market Is Growing So Fast

The energy storage systems projected 500 GW growth is being driven by a combination of technical, economic, and policy-related factors.

1. Renewable Energy Integration

Wind and solar are now the cheapest forms of new power generation worldwide. However, their variability creates challenges for grid operators. Battery energy storage systems solve this problem by storing excess energy and releasing it when demand rises.

2. Grid Modernization and Stability

Utilities are increasingly deploying BESS for peak shaving and load shifting, frequency regulation, and emergency backup. These applications make the grid more stable and resilient.

3. Commercial and Industrial Adoption

The C&I sector is also embracing storage. Businesses use BESS to cut peak demand charges, integrate renewable energy, and secure backup power through certified BESS installations.

4. Policy Support and Incentives

Governments are backing storage projects through subsidies, tax credits, and regulatory frameworks. For example, the U.S. Inflation Reduction Act provides tax benefits for energy storage projects, while the EU Green Deal is pushing for accelerated deployment.


The Risks of Rapid Expansion Without Certification

The market opportunity in certified BESS installations is immense. Yet, expansion without robust certification frameworks introduces serious risks.

  • Thermal Runaway – Poorly tested systems can overheat and cause chain-reaction fires.
  • Fire Hazards – Uncertified systems lack the proven ability to prevent or contain fires.
  • Grid Instability – Unsafe or poorly integrated BESS may destabilize the grid.
  • Investor ConcernsHow certification improves investor confidence in BESS is by ensuring long-term reliability. Without it, projects face financing barriers.

These risks highlight why safety risks of battery energy storage without certification cannot be ignored.


Why Safety Certification Matters for BESS

As the global BESS market forecast to 2031 shows explosive growth, safety must be at the forefront. Certification ensures that BESS systems:

This framework builds the foundation for commercial and industrial BESS safety compliance worldwide.


Key Certifications That Define Global BESS Safety

Different certifications cover different layers of BESS safety. Together, they form a BESS safety certification framework for renewable integration.

UL Standards: The U.S. Benchmark

  • UL 1973 – Battery safety for stationary, EV, and mobile applications.
  • UL 9540 – System-level certification for safe operation.
  • UL 9540A – Fire testing method to assess thermal runaway risks.

IEC 62933: The Global Standard

The IEC 62933 global standard for grid storage safety sets the technical foundation for performance, installation, and system integration.

CE Marking in Europe

The CE marking requirements for battery energy storage systems ensure safety, environmental compliance, and market readiness within the EU.

NFPA 855: Installation Safety

The NFPA 855 standard provides guidelines for siting, spacing, and fire prevention for energy storage projects in North America.


Certification Builds Market Confidence

Beyond safety, certification also drives global BESS market growth by creating trust.

How Certification Improves Investor Confidence in BESS

  • Reduces liability risks by ensuring compliance.
  • Streamlines project permitting and regulatory approval.
  • Enhances access to financing, as banks prefer certified projects.
  • Demonstrates compliance with regulatory requirements for battery energy storage systems 2031.

Without certification, large-scale projects could face costly delays, stricter insurance requirements, or outright rejection.


Global Trends in Energy Storage Certification and Testing

The global trends in energy storage certification and testing point toward stricter, more harmonized standards. Several developments are shaping the industry:

  • Harmonization of IEC and UL standards to reduce duplication.
  • Performance-based testing to reflect real-world conditions.
  • AI and digital twins for predictive safety assessments.
  • Third-party testing labs expanding capacity to handle growing demand.

As the market scales toward 500 GW energy storage forecast, these certification trends will define how quickly projects come online.


Looking Ahead: Balancing Growth With Safety

The global BESS market forecast to 2031 highlights a future of rapid scaling, but it comes with responsibility. The industry must prioritize best practices for BESS fire and explosion prevention to protect communities and maintain market trust.

Future growth will depend on:

  • Stronger collaboration between regulators and manufacturers.
  • Adoption of international standards like IEC 62933 across all regions.
  • Increased emphasis on C&I BESS safety compliance.
  • Continuous innovation in safety technologies.

By aligning market expansion with robust safety certification, the BESS industry can deliver safe, reliable, and sustainable storage solutions that support the global clean energy transition.

SCADA vs EMS in BESS – Key Differences and Applications in Battery Energy Storage

SCADA vs EMS in BESS: Understanding the Brain and Nerve System of Energy Storage

SCADA vs EMS in BESS: Battery Energy Storage Systems (BESS) are more than just batteries—they are intelligent ecosystems. At the heart of this intelligence lie two key control systems: SCADA (Supervisory Control and Data Acquisition) and EMS (Energy Management System).

But what’s the difference between them? Why do you need both in your energy storage infrastructure? Let’s break it down.


🔍 What is SCADA in BESS?

SCADA is like the central nervous system of your energy infrastructure. It allows operators to monitor and control equipment remotely and in real-time.

✅ Key Functions of SCADA:

  • Real-time Monitoring: Tracks voltage, temperature, SOC (State of Charge), power output, and more.
  • Data Acquisition: Collects data from sensors, meters, and other field devices.
  • Alarm Management: Triggers alerts in case of system faults, safety issues, or performance anomalies.
  • Remote Control: Lets operators switch systems ON/OFF or change parameters remotely.
  • Visualization: SCADA HMIs (Human-Machine Interfaces) display data visually for easy interpretation.

SCADA systems in BESS typically interact with Battery Management Systems (BMS), Power Conversion Systems (PCS), Inverters, and environmental sensors.


⚙️ What is EMS in BESS?

EMS (Energy Management System) is a higher-level optimization system that manages how, when, and where energy is stored or dispatched, often based on grid requirements, market conditions, and renewable energy forecasts.

EMS is the strategic brain of the energy storage system. While SCADA controls how things operate, EMS decides what should be done to maximize efficiency, economics, and reliability.

✅ Key Functions of EMS:

EMS works above the SCADA layer, making strategic decisions based on data collected by SCADA and other sources.


🔁 Key Differences: SCADA vs EMS in BESS

FeatureSCADAEMS
Primary RoleOperational monitoring & controlStrategic energy optimization
ScopeDevice & hardware levelSystem-wide & market interaction
Real-time ControlYesNo (uses planning-based control)
ForecastingNoYes
Alarm & Event HandlingYesLimited (depends on integration)
Grid InteractionMinimalFull (based on market, grid, or DSO signals)
VisualizationSCADA HMI/GUIDashboards/Reports

🧠 Real-World Comparison: How SCADA & EMS Work Together

Imagine a utility-scale solar-plus-storage project:

SCADA’s Role:

  • Monitors PV inverter voltage, battery temperature, current flows.
  • Flags errors in PCS (Power Conversion System) and triggers shutdowns if needed.
  • Logs all sensor data every second.

EMS’s Role:

  • Analyzes day-ahead pricing forecasts and predicts solar production.
  • Decides to charge batteries at noon and discharge at 6 PM to maximize ROI.
  • Communicates with SCADA to execute commands.

Together, EMS and SCADA form a closed-loop intelligence system—SCADA watches, EMS decides.


🌐 Different Use Cases (EMS vs SCADA in BESS)

🔋 Residential ESS

  • SCADA is usually embedded at low levels.
  • EMS often comes pre-configured or in cloud-based form for load shifting and solar self-use.

🏭 Commercial & Industrial ESS

  • SCADA monitors multiple assets: batteries, PV, diesel gensets.
  • EMS optimizes cost-saving strategies across multiple sites.

⚡ Utility-Scale BESS

  • SCADA integrates with substation automation and DNP3/IEC 61850 protocols.
  • EMS participates in energy markets, frequency response, and ancillary services.

📈 Why You Need Both

Some may think EMS alone is enough, but it’s not. Without SCADA, the EMS is blind. Without EMS, the SCADA is mute.

✅ SCADA ensures the system runs safely.
✅ EMS ensures it runs profitably.

You need both for your BESS to be intelligent, safe, and profitable.


❓ FAQ: SCADA vs EMS in BESS

Q1. Can SCADA and EMS be integrated into one platform?
Yes. Many vendors offer combined platforms or modular systems where EMS sits on top of SCADA.

Q2. Is EMS cloud-based and SCADA local?
Generally, yes. SCADA operates locally for fast response, while EMS can be local or cloud-based for broader optimization.

Q3. Which one is more expensive?
EMS often costs more due to its software intelligence, licensing, and integration needs.

Q4. Which is more important for safety?
SCADA is crucial for safety and reliability. EMS focuses more on economic performance.


📌 Final Thoughts: Build a Smarter BESS with SCADA and EMS

Understanding the SCADA vs EMS in BESS distinction is not just academic—it has real business and technical consequences. If you want your Battery Energy Storage System to be both safe and smart, you need both systems.

Understanding their roles and differences is crucial for:

  • System integrators
  • Project developers
  • Energy consultants
  • Facility managers
  • And anyone involved in the deployment of BESS

Whether you’re building a microgrid or managing utility-scale storage, make sure your BESS includes both a robust SCADA and an intelligent EMS.

Looking for help integrating SCADA and EMS in your energy project? Reach out to a qualified consultant who understands both layers of the stack and can optimize your BESS from the ground up.

How Demand Response Works

Demand Response: A Smarter Way to Balance Energy for Businesses and the Grid

What Is Demand Response?

The modern power grid is under pressure. Rising electricity demand, renewable energy integration, and fluctuating prices make it harder to keep supply and demand in balance. Demand Response (DR) is a smart energy management solution that allows utilities and businesses to adjust power consumption in real-time, helping stabilize the grid while cutting costs.

At Sunlith Energy, we see demand response as a critical bridge between renewable energy, battery energy storage systems (BESS), and smarter energy use. It empowers both businesses and homeowners to play an active role in energy efficiency and sustainability.


How Demand Response Works

Demand response is a system where electricity consumers reduce or shift their energy usage during peak demand periods in response to signals from utilities or grid operators. These signals can be price-based (time-of-use rates) or incentive-based (payments for participation).

How Demand Response Works

Here’s how it typically works:

  1. Signal Received – The utility alerts participants of high demand or peak pricing.
  2. Load Adjustment – Businesses and homes reduce or shift energy-intensive processes.
  3. Support from BESS – Stored energy from battery energy storage systems covers the gap.
  4. Grid Stabilization – Reduced stress on the grid prevents blackouts and keeps prices stable.

By integrating BESS solutions from Sunlith Energy, participants don’t just reduce demand—they optimize it by storing cheap off-peak energy and using it when it matters most.


Types of Demand Response Programs

Types of Demand Response Programs

Different markets and utilities offer various forms of demand response. The most common types include:

1. Price-Based Demand Response

  • Time-of-Use (TOU) Pricing: Electricity costs vary by time of day.
  • Real-Time Pricing (RTP): Prices shift hourly based on market conditions.
  • Critical Peak Pricing (CPP): Higher rates during grid stress events.

2. Incentive-Based Demand Response

  • Direct Load Control (DLC): Utilities remotely adjust certain equipment (like HVAC).
  • Interruptible/Curtailable Programs: Businesses get discounts for agreeing to reduce load.
  • Capacity Market Participation: Large consumers earn revenue by offering flexibility to the grid.

Benefits of Demand Response

Demand response is more than just cost savings. It brings value to businesses, households, and the power grid as a whole:

🔹 For Businesses

  • Lower electricity bills through avoided peak pricing.
  • Participation payments from utilities.
  • Improved sustainability credentials.

🔹 For the Grid

  • Reduced risk of blackouts.
  • Easier integration of renewable energy sources like solar and wind.
  • Lower need for expensive fossil-fuel peaker plants.

🔹 For the Environment

  • Lower carbon emissions.
  • Optimized use of clean energy.
  • Smarter, greener energy ecosystems.

Demand Response and Battery Energy Storage Systems (BESS)

One of the most powerful enablers of demand response is battery energy storage systems (BESS). With BESS, businesses can:

Demand Response + BESS Integration

👉 Learn more in our detailed guide: Energy Arbitrage Explained.


Demand Response in the Global Energy Transition

Countries across the EU, US, and Asia are actively encouraging demand response programs as part of their clean energy policies. Regulations like the EU’s 2023/1542 and US market incentives through FERC and ISO programs highlight DR as a priority tool.

With Sunlith Energy’s smart BESS solutions, businesses can stay compliant, capture new revenue streams, and actively support the energy transition.


Key Takeaways

  • Demand Response balances supply and demand in real-time.
  • It offers financial benefits for businesses and households.
  • Battery storage systems supercharge DR by adding flexibility.
  • Demand response is essential for a renewable-powered, resilient grid.

Conclusion

Demand response is no longer just an option—it’s becoming a necessity. By combining smart demand management with advanced battery energy storage systems, businesses and homeowners can save money, reduce carbon footprints, and support a more resilient energy future.

At Sunlith Energy, we help organizations unlock the full potential of demand response through tailored BESS solutions that work seamlessly with grid programs.

👉 Explore our solutions here: Sunlith Energy BESS Systems.

Bess Certifications Guide

BESS Certifications Explained: What You Need to Know Before You Buy or Sell

BESS Certifications: Battery Energy Storage Systems (BESS) are becoming a critical part of our renewable energy future. Whether you’re buying, selling, installing, or manufacturing BESS units, understanding the required certifications is crucial. Without proper certifications, your product may not be legally sold, safely operated, or even insured in many regions.

In this blog, we’ll break down the most important certifications for BESS and explain what they mean, why they matter, and how to ensure your system is compliant.


1. Why Are BESS Certifications Important?

Certifications are like a stamp of approval from trusted organizations. They prove that a BESS unit has passed safety, performance, and environmental tests. Without them:

  • You risk safety issues like fires or system failure.
  • Your product might be blocked from certain markets.
  • Insurance claims can be denied after accidents.
  • You might face legal problems or product recalls.

2. BESS Certifications Common Global Standards

Different countries and regions have different certification requirements. Here are some of the most common ones globally:


A. UL Standards (Mainly for North America)for BESS Certifications


UL (Underwriters Laboratories) is a leading safety organization in the U.S. These are some key UL standards for BESS:

Why it matters: UL certifications are essential for selling in the U.S. and Canada. Without these, your product won’t be accepted in most residential or commercial projects.


B. IEC Standards (International) for BESS


The International Electrotechnical Commission (IEC) sets safety and performance standards recognized worldwide.

  • IEC 62619 – Safety for Secondary Lithium Cells and Batteries
  • IEC 62933 – Series of standards for energy storage systems
  • IEC 62133 – Safety for portable sealed secondary cells
  • IEC 61427 – Performance of batteries used in renewable energy systems

Why it matters: Many countries outside North America refer to IEC standards for regulatory compliance, especially in Europe, Asia, and the Middle East.


C. CE Marking (Europe)


Products sold in the European Union must meet CE requirements. For BESS, this includes:

  • EMC (Electromagnetic Compatibility)
  • LVD (Low Voltage Directive)
  • RoHS (Restriction of Hazardous Substances)
  • Safety & Fire Protection

Why it matters: Without CE marking, you can’t legally sell your BESS product in the European Economic Area (EEA).


D. BIS (India)


In India, the Bureau of Indian Standards (BIS) regulates battery and BESS imports and production.

Why it matters: India is a growing BESS market, and local certifications are mandatory for government tenders and utility-scale projects.


E. CEC (Australia)


The Clean Energy Council (CEC) governs renewable energy products in Australia.

  • Products must be on the CEC approved list
  • Certifications must include both product testing and installer compliance

Why it matters: BESS products not listed with the CEC are ineligible for rebates or connection to the grid.


3. Certification for the Entire System, Not Just the Cell

One major mistake people make is assuming that a certified cell means the entire battery system is certified. That’s not true.

A complete BESS includes:

  • Battery cells or packs
  • Battery Management System (BMS)
  • Power Conversion System (PCS)
  • Cooling systems, enclosures, cables, and connectors

Each component AND the fully assembled system must meet certification standards.


4. Factory-Level Certifications

Besides product certifications, the factory that makes your BESS should also be certified:

  • ISO 9001 – Quality Management
  • ISO 14001 – Environmental Management
  • ISO 45001 – Occupational Health & Safety
  • IATF 16949 – (If automotive-related BESS)

Why it matters: Certified factories reduce the risk of defects, improve traceability, and meet import regulations more smoothly.


5. Who Issues These Certifications?

  • UL – Underwriters Laboratories (USA)
  • TÜV – Germany-based, issues CE and IEC certifications
  • Intertek – Testing and certification services globally
  • SGS – Certification body with international presence
  • CSA – Canadian Standards Association

Always work with internationally recognized certification bodies for credibility and global market acceptance.


6. Red Flags to Watch Out For

  • Only cell report is shown – This is not enough! Ask for system-level reports.
  • No thermal runaway test (UL 9540A) – Risk of fire is very high without this.
  • Non-recognized lab – Some factories use fake or local-only reports.
  • Outdated reports – Certification validity matters. Check the dates.
  • No factory audit certificates – Poor factory management = higher product risk.

7. Tips for Buyers & Project Developers

  • Always request full certification reports, not just summaries.
  • Ask for the name of the lab and the full system test, not just component tests.
  • Make sure the certification is valid for the target market (UL for USA, CE for Europe, etc.)
  • Work with verified sourcing or consulting agents who understand the compliance rules.

Conclusion


BESS certifications are not just paperwork—they’re your protection against risk, rejection, and regulatory trouble. Whether you’re importing, installing, or investing in energy storage systems, certification is your first line of defense.

Make sure your BESS is properly tested, certified, and factory-audited to avoid future headaches. If you’re not sure, work with local experts who can help verify everything before the deal is done.


Need Help?

If you’re buying BESS from China or anywhere else, and you want to make sure the product is safe and certified, I can help. I do:

  • Factory checks
  • Certification report verification
  • BESS system inspections
  • Compliance guidance for your target market

Let’s make your BESS project safer, faster, and fully compliant.