Posts

How to Choose Solar Panels and Batteries to Run a 100kWh Load 24/7: Full Guide with Examples

If you’re planning to power a 100kWh load continuously (24/7) using solar panels and a battery energy storage system (BESS), it’s not as simple as just multiplying watts. You need to factor in weather conditions, seasonal sunlight availability, cloudy days, and energy efficiency. This blog will guide you step-by-step on how to size your system properly using formulas, examples, and visual data.


???? What You’ll Learn:

  • How to calculate required solar panel capacity
  • Why yearly weather data is critical
  • How to handle cloudy days and winter months
  • Battery sizing for different backup durations
  • Example formulas and real-world values

???? Step 1: Understand Your Load

Let’s say your system must support a 100 kWh per hour load.

  • 24 hours/day × 100 kWh = 2,400 kWh per day
  • That’s your daily energy demand from solar + battery.

???? Step 2: Analyze Your Location’s Solar Irradiance

Your geographic location heavily influences how much sunlight you receive—measured in Peak Sun Hours (PSH).

LocationPeak Sun Hours
Phoenix, USA6.5 PSH
New Delhi, India5.5 PSH
London, UK2.8 PSH

???? You can get this data from tools like PVWatts, NASA SSE, or Solcast.


???? Step 3: Calculate Required Solar Panel Capacity

Formula:

textCopyEditRequired Solar Capacity (kW) = Daily Load (kWh) ÷ (PSH × Derating Factor)
  • Daily Load = 2,400 kWh
  • Derating factor (system losses) = ~0.8
SeasonPSHRequired Solar Capacity
Summer6.52,400 ÷ (6.5 × 0.8) ≈ 462 kW
Winter4.02,400 ÷ (4.0 × 0.8) ≈ 750 kW
Cloudy Days2.52,400 ÷ (2.5 × 0.8) ≈ 1,200 kW
Solar panels required for 100KWh running 24/7



????️ Why Consider Cloudy Days?

Even if your area has high annual irradiance, you’ll still face days with poor sun exposure. For mission-critical applications, your system must:

  • Be oversized for worst-case scenarios.
  • Include battery backup for 1–3 days.
  • Use hybrid systems (e.g., gensets or grid backup) if needed.

❄️ Considerations for Winter Months

Winter brings:

  • Lower sun angles
  • Shorter daylight
  • Snow cover (for northern regions)

???? This reduces effective PSH and increases your dependence on storage or supplemental power.


⚡ Step 4: Size the BatteryEnergy Storage System for Backup

Battery Energy Storage System should store enough energy to power the load during non-sunny hours or failures.

Formula:

textCopyEditBattery Capacity (kWh) = (Daily Load × Days of Autonomy) ÷ (DoD × Efficiency)
  • Daily Load = 2,400 kWh
  • Depth of Discharge (DoD) = 0.8
  • Round-trip Efficiency = 0.9
Backup DurationRequired Battery Capacity
1 Day2,400 ÷ (0.8 × 0.9) ≈ 3,333 kWh
2 Days4,800 ÷ (0.8 × 0.9) ≈ 6,667 kWh
3 Days7,200 ÷ (0.8 × 0.9) ≈ 10,000 kWh
Battery Backup required for 100Wh 24/7 Running



✅ Tips for Choosing Solar Panels

  • ✔️ Use Tier-1 panels with high efficiency (≥21%)
  • ✔️ Consider bifacial panels if space allows
  • ✔️ Use anti-reflective coating for dust-heavy areas
  • ✔️ Install with adjustable tilt for seasonal optimization

✅ Tips for Choosing Batteries Cells for BESS


???? Hybrid Solutions for Reliability

When powering a 100kWh continuous load, consider a hybrid setup:

  • ???? Solar + Battery + Diesel: For industrial backup
  • ???? Solar + Grid + Battery: For grid-tied systems
  • ????️ Solar + Wind + Battery: For off-grid redundancy

???? Real Use Case Example

Scenario:

  • Location: Northern India
  • PSH (winter): 4 hours
  • Load: 100kWh × 24 = 2,400kWh/day
  • Solar Size = 2,400 ÷ (4.0 × 0.8) = 750 kW
  • Battery for 2 days = 2,400 × 2 ÷ (0.8 × 0.9) ≈ 6,667 kWh

???? FAQs

Q: Can I go without batteries?

A: Only if your load is flexible or you remain connected to the grid.

Q: Should I oversize the battery or the solar array?

A: Both, depending on your climate. Cloudy regions need higher solar oversizing.

Q: What’s better—LFP or NMC batteries?


???? Conclusion

Designing a solar + battery system for a 100kWh 24/7 load isn’t just about matching numbers—it’s about planning for the worst day of the year, not the best. Location-specific solar data, battery autonomy, system losses, and seasonal variations must all be part of your sizing strategy.

Portable Battery Energy Storage Systems: Power Anywhere, Anytime

What is a Portable Battery Energy Storage System?

A Portable Battery Energy Storage System is a mobile energy unit that stores electricity—often sourced from the grid or renewable sources like solar panels—and delivers it when needed. Unlike fixed installations, these systems are lightweight, easy to transport, and designed for quick deployment in homes, outdoor sites, emergency zones, and small businesses.

Key Features of Portable Battery Energy Storage Systems

• Mobility: Lightweight and compact designs for easy transport

• Plug-and-Play: Simple operation with USB, AC, and DC outputs

• Solar Charging: Many models support solar input for off-grid use

• Smart Management: Equipped with BMS (Battery Management System) for safety and efficiency

• Environmentally Friendly: No emissions, noise, or fuel needed

Why Portable Energy Storage is Gaining Traction

1. Emergency Preparedness: Power outages are becoming more frequent. A portable unit ensures your essentials stay running.

2. Outdoor Adventures: From camping to off-grid travel, PBESS provides energy independence.

3. Worksite Flexibility: Ideal for temporary job sites and mobile operations.

4. Eco-Conscious Living: Reduces reliance on fossil fuels and promotes renewable energy use.

Types of Portable Battery Energy Storage Systems

1. Personal/Consumer-Grade Units (100Wh – 2000Wh): Compact power stations for phones, laptops, drones, and small appliances.

   Examples: EcoFlow River, Jackery Explorer, Anker PowerHouse

2. Mid-Capacity Systems (2kWh – 5kWh): Power for refrigerators, medical devices, TVs.

   Examples: Bluetti AC200MAX, EcoFlow Delta Pro

3. High-Capacity Portable ESS (5kWh – 20kWh+): Off-grid homes, mobile clinics, events.

   Examples: Hinen Portable ESS

4. Solar Generator Kits: Bundles of battery units and foldable solar panels.

Applications of Portable Energy Storage Systems

• Residential Backup: Keep essentials running during blackouts

• Outdoor Use: Campers, RVs, boaters

• Construction & Industrial Sites: Power tools and devices

• Emergency & Relief Operations: Communication, lights, medical gear

• Events & Exhibitions: AV equipment, lighting

How to Choose the Right PBESS

• Capacity (Wh or kWh): Estimate your daily power need

• Output Ports: Check for AC, USB, DC, inverter types

• Recharge Options: Grid, solar, car, generator

• Cycle Life: 2000+ cycles preferred

• Weight & Portability: Match your mobility needs

• Safety Certifications: UL, CE, UN38.3

Future of Portable Energy Storage

LFP and semi-solid battery technologies are improving safety, lifespan, and efficiency. App-enabled units offer diagnostics and control from mobile devices.

Final Thoughts

Portable Battery Energy Storage Systems are no longer a luxury—they’re fast becoming a necessity in our power-hungry, unpredictable world. Whether you’re braving the outdoors, preparing for emergencies, or reducing your carbon footprint, these systems give you control over your energy needs.

Looking to explore high-quality portable BESS units for personal or business use? Contact us today for expert consultation and sourcing support tailored to your needs.