Posts

The Global BESS Market

The Global BESS Market: Projected Growth to 500 GW by 2031 and the Rising Importance of Safety Certification

Global BESS Market Forecast to 2031

The global BESS market is projected to grow exponentially, reaching 500 GW by 2031. This forecast is a reflection of the world’s transition toward clean energy, electrification, and grid modernization. Battery Energy Storage Systems (BESS) are no longer niche technologies—they are becoming central to the stability and flexibility of modern energy networks.

But with such rapid deployment, BESS safety certification has emerged as a critical factor. Without strong certification standards, the risks of fire, explosion, or system failure increase. These risks not only threaten energy reliability but also create challenges for regulators, insurers, and investors.

In this article, we explore the drivers of global BESS market growth, the importance of safety certification, and the frameworks shaping the future of energy storage systems.


Why the Global BESS Market Is Growing So Fast

The energy storage systems projected 500 GW growth is being driven by a combination of technical, economic, and policy-related factors.

1. Renewable Energy Integration

Wind and solar are now the cheapest forms of new power generation worldwide. However, their variability creates challenges for grid operators. Battery energy storage systems solve this problem by storing excess energy and releasing it when demand rises.

2. Grid Modernization and Stability

Utilities are increasingly deploying BESS for peak shaving and load shifting, frequency regulation, and emergency backup. These applications make the grid more stable and resilient.

3. Commercial and Industrial Adoption

The C&I sector is also embracing storage. Businesses use BESS to cut peak demand charges, integrate renewable energy, and secure backup power through certified BESS installations.

4. Policy Support and Incentives

Governments are backing storage projects through subsidies, tax credits, and regulatory frameworks. For example, the U.S. Inflation Reduction Act provides tax benefits for energy storage projects, while the EU Green Deal is pushing for accelerated deployment.


The Risks of Rapid Expansion Without Certification

The market opportunity in certified BESS installations is immense. Yet, expansion without robust certification frameworks introduces serious risks.

  • Thermal Runaway – Poorly tested systems can overheat and cause chain-reaction fires.
  • Fire Hazards – Uncertified systems lack the proven ability to prevent or contain fires.
  • Grid Instability – Unsafe or poorly integrated BESS may destabilize the grid.
  • Investor ConcernsHow certification improves investor confidence in BESS is by ensuring long-term reliability. Without it, projects face financing barriers.

These risks highlight why safety risks of battery energy storage without certification cannot be ignored.


Why Safety Certification Matters for BESS

As the global BESS market forecast to 2031 shows explosive growth, safety must be at the forefront. Certification ensures that BESS systems:

This framework builds the foundation for commercial and industrial BESS safety compliance worldwide.


Key Certifications That Define Global BESS Safety

Different certifications cover different layers of BESS safety. Together, they form a BESS safety certification framework for renewable integration.

UL Standards: The U.S. Benchmark

  • UL 1973 – Battery safety for stationary, EV, and mobile applications.
  • UL 9540 – System-level certification for safe operation.
  • UL 9540A – Fire testing method to assess thermal runaway risks.

IEC 62933: The Global Standard

The IEC 62933 global standard for grid storage safety sets the technical foundation for performance, installation, and system integration.

CE Marking in Europe

The CE marking requirements for battery energy storage systems ensure safety, environmental compliance, and market readiness within the EU.

NFPA 855: Installation Safety

The NFPA 855 standard provides guidelines for siting, spacing, and fire prevention for energy storage projects in North America.


Certification Builds Market Confidence

Beyond safety, certification also drives global BESS market growth by creating trust.

How Certification Improves Investor Confidence in BESS

  • Reduces liability risks by ensuring compliance.
  • Streamlines project permitting and regulatory approval.
  • Enhances access to financing, as banks prefer certified projects.
  • Demonstrates compliance with regulatory requirements for battery energy storage systems 2031.

Without certification, large-scale projects could face costly delays, stricter insurance requirements, or outright rejection.


Global Trends in Energy Storage Certification and Testing

The global trends in energy storage certification and testing point toward stricter, more harmonized standards. Several developments are shaping the industry:

  • Harmonization of IEC and UL standards to reduce duplication.
  • Performance-based testing to reflect real-world conditions.
  • AI and digital twins for predictive safety assessments.
  • Third-party testing labs expanding capacity to handle growing demand.

As the market scales toward 500 GW energy storage forecast, these certification trends will define how quickly projects come online.


Looking Ahead: Balancing Growth With Safety

The global BESS market forecast to 2031 highlights a future of rapid scaling, but it comes with responsibility. The industry must prioritize best practices for BESS fire and explosion prevention to protect communities and maintain market trust.

Future growth will depend on:

  • Stronger collaboration between regulators and manufacturers.
  • Adoption of international standards like IEC 62933 across all regions.
  • Increased emphasis on C&I BESS safety compliance.
  • Continuous innovation in safety technologies.

By aligning market expansion with robust safety certification, the BESS industry can deliver safe, reliable, and sustainable storage solutions that support the global clean energy transition.

Why CE for BESS Matters

CE for BESS: Complete Guide to Battery Energy Storage Certification

Battery Energy Storage Systems (BESS) are critical to the clean energy transition, but ensuring their safety and compliance requires more than just good engineering. Certifications like CE for BESS is one of the most recognized marks in Europe, confirming that a product meets essential health, safety, and environmental standards. However, while CE is necessary for entering the EU market, it does not always guarantee complete system-level safety. To build global trust, manufacturers often combine CE with other certifications such as UL and IEC, ensuring stronger compliance, reliability, and market acceptance.


What Does CE Certification Mean for BESS?

The CE mark (Conformité Européenne) is a mandatory certification for products entering the European Economic Area (EEA). For BESS, CE shows compliance with EU directives and harmonized standards.

When a BESS carries the CE mark, it declares conformity with the following directives:

  • Low Voltage Directive (LVD) – Protects against electrical hazards.
  • Electromagnetic Compatibility (EMC) Directive – Prevents electrical interference.
  • Restriction of Hazardous Substances (RoHS) – Limits toxic chemicals in batteries and components.
  • General Safety Directives – Cover risks related to machinery and consumer use.

In essence, CE for BESS confirms that the system has met basic EU safety and environmental requirements, allowing it to be legally marketed and installed in Europe.


What Does CE for BESS Cover?

CE certification for BESS evaluates multiple aspects of product safety. These include:

  1. Electrical Safety – Preventing risks of electric shock, short circuits, and overheating.
  2. Thermal Safety – Assessing insulation, cooling design, and fire prevention.
  3. Electromagnetic Compatibility (EMC) – Ensuring the BESS does not emit disruptive signals.
  4. Environmental Safety – Controlling hazardous substances and ensuring recyclability.

However, CE certification for BESS is primarily based on a self-declaration of conformity. Manufacturers test the product internally or through a notified body, then issue a Declaration of Conformity (DoC).

This process makes CE less complex compared to third-party certifications like UL or IEC, which require independent validation and rigorous lab testing.


Why Do Most Companies Choose Only CE Certification for BESS?

Many BESS companies stop at CE certification instead of pursuing more demanding approvals. The main reasons include:

  • Lower Costs: CE testing is more affordable than UL or full IEC certification, which involve expensive third-party audits.
  • Faster Market Entry: CE certification is quicker, often taking weeks instead of months.
  • Simpler Process: CE allows self-declaration, reducing reliance on external labs.
  • Minimum Requirement: Since CE is mandatory in the EU, many companies view it as the lowest barrier to entry.

In other words, CE is often seen as the easiest, fastest, and cheapest way to access the European market. But relying on CE alone raises important safety concerns.


Is CE Alone Enough for BESS Safety?

The answer is no. While CE for BESS ensures legal entry into the EU market, it does not fully address the complex safety risks of modern energy storage systems.

BESS involves large-scale lithium-ion batteries, which can pose hazards like:

  • Thermal Runaway – Fire and explosion risk if cells fail.
  • High Voltage Risk – Danger of electric shock during installation or maintenance.
  • System-Level Failure – Risks from inverters, converters, or control systems.

To mitigate these risks, global safety standards go far beyond CE. Manufacturers often need UL, IEC, or national certifications depending on their target markets.


Key International Standards Beyond CE for BESS

Here are the most important certifications that complement CE for BESS:

1. IEC Standards (International)

2. UL Standards (North America)

3. National Certifications

Together, these standards ensure that a BESS is safe, grid-compatible, and globally marketable.


CE vs UL vs IEC: Key Differences

CertificationRegionScopeTesting RequirementMarket Perception
CEEuropeBasic health, safety, EMCSelf-declaration or notified bodyEntry-level compliance
UL 9540USA/CanadaFull system safetyThird-party lab requiredHigh credibility
IEC 62619 / 62933GlobalBattery + system safetyThird-party testingWidely respected
BIS / KC / PSENationalCountry-specific safety lawsMandatory local testsLegal requirement

This table shows why CE is the easiest to achieve but IEC and UL carry higher safety credibility.


Why BESS Needs Multiple Certifications

Unlike small electronics, BESS operates at industrial-scale energy levels, which makes multi-layer certification essential.

Why CE for BESS Matters
  • CE ensures compliance in Europe, but it does not evaluate system-level fire safety.
  • UL validates complete system safety and is trusted in North America.
  • IEC sets a global benchmark, especially for grid integration.
  • National standards guarantee local approval, allowing sales in markets like India, Japan, or Korea.

Therefore, CE should be seen as the foundation, while UL, IEC, and national approvals are the reinforcements. Together, they create a safe and credible BESS product.


Why Companies Should Go Beyond CE for BESS

Although CE is attractive for cost and speed, relying on it alone can lead to challenges:

  • Limited Market Reach: CE only works in Europe, not globally.
  • Lower Buyer Confidence: Utilities and large clients often demand UL or IEC reports.
  • Safety Risks: CE’s self-declaration model may overlook thermal runaway or fire propagation risks.
  • Regulatory Pressure: More countries are adopting stricter BESS safety laws.

Companies that invest in full certification portfolios gain stronger market access, brand reputation, and customer trust.


Conclusion: CE is Essential but Not the Final Step

CE for BESS is a mandatory starting point for European market access. It ensures compliance with basic safety, EMC, and environmental standards. However, CE is not enough to prove the full safety of complex battery energy storage systems.

Most companies choose CE because it is fast, affordable, and easy, but long-term success requires additional certifications like UL 9540, IEC 62619, and BIS. These provide independent validation, global acceptance, and higher safety assurance.

In the evolving energy landscape, BESS manufacturers and project developers must go beyond CE certification to build trust, reliability, and international growth opportunities.


❓ Frequently Asked Questions About CE for BESS

1. What is CE certification for BESS?

CE certification for Battery Energy Storage Systems (BESS) is a European conformity mark that shows the product meets essential EU safety, health, and environmental requirements. It’s a legal requirement for selling BESS in the European Economic Area (EEA).

2. Does CE certification cover fire safety in BESS?

No. CE certification ensures compliance with core directives but does not specifically address thermal runaway or fire safety risks. For complete system safety, manufacturers often pursue additional certifications like UL 9540A (fire safety) or IEC 62619 (battery cell safety).

3. How is CE different from UL or IEC certification?

CE Certification: Mandatory for the EU market, focuses on regulatory compliance.

UL Certification: Recognized mainly in North America, emphasizes product safety and fire prevention.

IEC Standards: Internationally accepted, providing detailed technical guidelines for testing and performance.

Using CE alone may open EU markets, but UL and IEC certifications build global trust and credibility.

4. Can I sell CE-certified BESS outside Europe?

Not necessarily. While CE certification allows access to EU markets, other regions like the US, Middle East, and Asia-Pacific often require local standards such as UL, BIS, or GB/T. Companies targeting global markets usually combine CE with additional certifications.

5. How long does CE for BESS take?

The timeline depends on the complexity of the BESS and the scope of testing. In general:

Large, complex systems: 3–6 months
Working with an accredited testing lab or certification body can speed up the process.

Simple systems: 4–8 weeks

6. Why is CE certification alone not enough for BESS safety?

Because BESS safety risks go beyond basic compliance. Issues like thermal runaway, grid stability, and fire containment need deeper testing. That’s why CE is often just the starting point, with UL, IEC, and country-specific certifications adding the necessary system-level validation.

EU Regulations for Battery Energy Storage Systems

EU Regulations for Battery Energy Storage Systems (BESS): What You Need to Know in 2026

EU Regulations for Battery Energy Storage Systems:Battery Energy Storage Systems (BESS) are at the heart of Europe’s clean energy transition. By storing renewable electricity, they stabilize grids, reduce fossil fuel dependency, and enable smarter energy management. But with great opportunity comes strict regulation.

The European Union (EU) has introduced comprehensive rules to ensure that battery systems are safe, sustainable, and ethically sourced. For manufacturers, developers, and operators, understanding these regulations is critical to avoid penalties and stay competitive.

In this guide, we break down the EU Regulations for Battery Energy Storage Systems, highlight key compliance requirements, and provide a practical roadmap for companies preparing for 2026 and beyond.


Why the EU Is Tightening Battery Regulations

Europe’s ambitious climate goals—cutting greenhouse gas emissions and reaching net-zero by 2050—require a rapid scale-up of renewable energy and storage solutions. BESS plays a central role in integrating solar and wind into the grid.

However, batteries also pose risks:

  • Environmental impact from mining and disposal
  • Fire hazards if improperly managed
  • Supply chain concerns around critical raw materials

That’s why the EU replaced the older Battery Directive (2006/66/EC) with the EU Battery Regulation (2023/1542), introducing stricter sustainability, safety, and transparency rules.

👉 Related Reading: CE for BESS – Complete Guide to Certification


Key EU Regulations Affecting Battery Energy Storage Systems

EU Regulations for Battery Energy Storage Systems

1. The EU Battery Regulation (EU 2023/1542)

This regulation entered into force on February 18, 2024, and will fully replace the previous Battery Directive by August 2025. It applies to all batteries sold in the EU, including industrial batteries used in energy storage systems.

Main requirements include:

  • Substance restrictions: Limits on hazardous materials such as mercury, cadmium, and lead.
  • Labeling & QR codes: Clear labeling of capacity, hazards, and recycling information, along with a scannable QR code.
  • CE marking: Batteries must carry CE certification, showing compliance with EU directives.
  • Battery Passport: From February 2027, all industrial batteries >2 kWh must include a digital “Battery Passport” with details on composition, carbon footprint, and recyclability.
  • Due diligence obligations: Large producers (turnover > €40M) must implement supply chain policies to ensure responsible sourcing.

2. Extended Producer Responsibility (EPR)

The EU applies Extended Producer Responsibility (EPR) to all batteries, including BESS. This means that producers must finance:

  • Collection and recycling programs
  • End-of-life treatment
  • Safe disposal methods

To meet obligations, companies can join Producer Responsibility Organisations (PROs), which handle compliance on their behalf.

This ensures that batteries don’t end up in landfills but are reused or recycled into the supply chain.


3. Clean Energy and Market Integration Rules

BESS isn’t just about hardware—it’s also about market access. The EU’s Clean Energy Package (2019) gives storage systems fairer treatment in electricity markets.

Key highlights:

  • BESS can participate in wholesale, balancing, and capacity markets.
  • Grid operators must treat storage fairly, avoiding double charging.
  • Developers benefit from streamlined permitting under the Net-Zero Industry Act (2024).
  • The Critical Raw Materials Act (2024) introduces stricter monitoring of strategic materials like lithium and cobalt.

Together, these measures aim to create a level playing field for battery operators while ensuring Europe’s independence from risky supply chains.


4. Safety Standards and Best Practices

Safety is a top concern for utility-scale battery projects. In 2025, the European Association for Storage of Energy (EASE) published Guidelines on Safety Best Practices, covering product design, site management, and emergency response.

For compliance, BESS projects must consider:

  • Voltage thresholds: DC ≤ 1500 V, AC ≤ 1000 V.
  • Minimum capacity: Systems above 20 kWh fall under stricter rules.
  • System-level testing: Incorporating IEC and CE standards into project certification.

👉 Related Reading: IEC Certifications for BESS

By following international standards like IEC 62619, IEC 62933, and IEC 61000, developers ensure their systems are both safe and insurable.


EU Regulations for Battery Energy Storage Systems: Compliance Checklist for Stakeholders

Different players in the BESS ecosystem face different obligations under EU regulations.

StakeholderKey Compliance Actions
ManufacturersSubstance restrictions, CE marking, integrate Battery Passport, supply chain audits
ProducersJoin PROs, fund recycling & collection, manage EPR obligations
DevelopersAlign with EASE guidelines, secure CE & IEC certification, follow permitting rules
Utilities/OperatorsEnsure system transparency (SoC, SoH data), integrate grid codes, meet clean energy rules
InvestorsRequire compliance proof before funding, reduce risk through certification checks

EU Regulations for Battery Energy Storage Systems: Why Compliance Matters for BESS Growth

Meeting EU regulations isn’t just about avoiding fines. It also delivers business benefits:

  • Market access: Non-compliant batteries cannot be sold in the EU.
  • Investor confidence: Certified and compliant projects attract easier funding.
  • Insurance & warranties: Insurers demand CE and IEC-certified systems.
  • Sustainability advantage: Battery Passport helps companies demonstrate green credentials.

In short, regulatory compliance is now a competitive differentiator in the fast-growing BESS sector.


Conclusion: EU Regulations for Battery Energy Storage Systems Preparing for 2026 and Beyond

The EU has set a high bar for Battery Energy Storage Systems. From CE marking and Battery Passports to EPR obligations and safety guidelines, every stakeholder must act now to prepare for full enforcement in 2025–2027.

For BESS companies, compliance isn’t a box-ticking exercise—it’s the foundation for long-term growth in the European market.

👉 Next Step: Explore our in-depth guides on CE Certification for BESS and IEC Certifications for BESS to strengthen your regulatory strategy.

Bess Certifications Guide

BESS Certifications Explained: What You Need to Know Before You Buy or Sell

BESS Certifications: Battery Energy Storage Systems (BESS) are becoming a critical part of our renewable energy future. Whether you’re buying, selling, installing, or manufacturing BESS units, understanding the required certifications is crucial. Without proper certifications, your product may not be legally sold, safely operated, or even insured in many regions.

In this blog, we’ll break down the most important certifications for BESS and explain what they mean, why they matter, and how to ensure your system is compliant.


1. Why Are BESS Certifications Important?

Certifications are like a stamp of approval from trusted organizations. They prove that a BESS unit has passed safety, performance, and environmental tests. Without them:

  • You risk safety issues like fires or system failure.
  • Your product might be blocked from certain markets.
  • Insurance claims can be denied after accidents.
  • You might face legal problems or product recalls.

2. BESS Certifications Common Global Standards

Different countries and regions have different certification requirements. Here are some of the most common ones globally:


A. UL Standards (Mainly for North America)for BESS Certifications


UL (Underwriters Laboratories) is a leading safety organization in the U.S. These are some key UL standards for BESS:

Why it matters: UL certifications are essential for selling in the U.S. and Canada. Without these, your product won’t be accepted in most residential or commercial projects.


B. IEC Standards (International) for BESS


The International Electrotechnical Commission (IEC) sets safety and performance standards recognized worldwide.

  • IEC 62619 – Safety for Secondary Lithium Cells and Batteries
  • IEC 62933 – Series of standards for energy storage systems
  • IEC 62133 – Safety for portable sealed secondary cells
  • IEC 61427 – Performance of batteries used in renewable energy systems

Why it matters: Many countries outside North America refer to IEC standards for regulatory compliance, especially in Europe, Asia, and the Middle East.


C. CE Marking (Europe)


Products sold in the European Union must meet CE requirements. For BESS, this includes:

  • EMC (Electromagnetic Compatibility)
  • LVD (Low Voltage Directive)
  • RoHS (Restriction of Hazardous Substances)
  • Safety & Fire Protection

Why it matters: Without CE marking, you can’t legally sell your BESS product in the European Economic Area (EEA).


D. BIS (India)


In India, the Bureau of Indian Standards (BIS) regulates battery and BESS imports and production.

Why it matters: India is a growing BESS market, and local certifications are mandatory for government tenders and utility-scale projects.


E. CEC (Australia)


The Clean Energy Council (CEC) governs renewable energy products in Australia.

  • Products must be on the CEC approved list
  • Certifications must include both product testing and installer compliance

Why it matters: BESS products not listed with the CEC are ineligible for rebates or connection to the grid.


3. Certification for the Entire System, Not Just the Cell

One major mistake people make is assuming that a certified cell means the entire battery system is certified. That’s not true.

A complete BESS includes:

  • Battery cells or packs
  • Battery Management System (BMS)
  • Power Conversion System (PCS)
  • Cooling systems, enclosures, cables, and connectors

Each component AND the fully assembled system must meet certification standards.


4. Factory-Level Certifications

Besides product certifications, the factory that makes your BESS should also be certified:

  • ISO 9001 – Quality Management
  • ISO 14001 – Environmental Management
  • ISO 45001 – Occupational Health & Safety
  • IATF 16949 – (If automotive-related BESS)

Why it matters: Certified factories reduce the risk of defects, improve traceability, and meet import regulations more smoothly.


5. Who Issues These Certifications?

  • UL – Underwriters Laboratories (USA)
  • TÜV – Germany-based, issues CE and IEC certifications
  • Intertek – Testing and certification services globally
  • SGS – Certification body with international presence
  • CSA – Canadian Standards Association

Always work with internationally recognized certification bodies for credibility and global market acceptance.


6. Red Flags to Watch Out For

  • Only cell report is shown – This is not enough! Ask for system-level reports.
  • No thermal runaway test (UL 9540A) – Risk of fire is very high without this.
  • Non-recognized lab – Some factories use fake or local-only reports.
  • Outdated reports – Certification validity matters. Check the dates.
  • No factory audit certificates – Poor factory management = higher product risk.

7. Tips for Buyers & Project Developers

  • Always request full certification reports, not just summaries.
  • Ask for the name of the lab and the full system test, not just component tests.
  • Make sure the certification is valid for the target market (UL for USA, CE for Europe, etc.)
  • Work with verified sourcing or consulting agents who understand the compliance rules.

Conclusion


BESS certifications are not just paperwork—they’re your protection against risk, rejection, and regulatory trouble. Whether you’re importing, installing, or investing in energy storage systems, certification is your first line of defense.

Make sure your BESS is properly tested, certified, and factory-audited to avoid future headaches. If you’re not sure, work with local experts who can help verify everything before the deal is done.


Need Help?

If you’re buying BESS from China or anywhere else, and you want to make sure the product is safe and certified, I can help. I do:

  • Factory checks
  • Certification report verification
  • BESS system inspections
  • Compliance guidance for your target market

Let’s make your BESS project safer, faster, and fully compliant.