Posts

SCADA Features

Top SCADA Features for Battery Energy Storage Systems (BESS)

As Battery Energy Storage Systems (BESS) continue to evolve, the need for intelligent monitoring and control becomes essential. One system that stands out in delivering this capability is SCADA. In this post, we explore the most powerful SCADA features that make energy storage smarter, safer, and more efficient.


What Are SCADA Features?

SCADA features refer to the capabilities within a SCADA (Supervisory Control and Data Acquisition) system that allow for effective management of industrial assets. In the context of BESS, these features enable:

  • Real-time monitoring
  • Remote control
  • Alarm and safety functions
  • Historical data logging
  • Predictive analytics

Each of these SCADA features enhances the operational efficiency and safety of battery energy storage systems.


1. Real-Time Data Acquisition

One of the most fundamental SCADA features is real-time data collection from all system components. This includes:

  • Battery voltage and current
  • State of Charge (SOC)
  • System temperature and humidity
  • Inverter status
  • Grid connection health

Why it matters:

Operators can make immediate decisions based on live system insights, improving uptime and reliability.


2. Remote Access and Control

Modern SCADA features include web and mobile dashboards, which allow system operators to:

Why it matters:

Remote capabilities reduce the need for onsite personnel and enable faster response to unexpected events.


3. Alarm Management and Safety Protocols

Among the most critical SCADA features is intelligent alarm handling. SCADA can detect and alert operators to:

  • Overvoltage or undervoltage
  • Temperature anomalies
  • Fire or smoke detection
  • Communication failures

Why it matters:

These alerts help prevent damage, enhance safety, and minimize downtime through quick intervention.


4. Historical Data Logging

SCADA systems continuously log all operational data. This SCADA feature provides:

  • Long-term performance tracking
  • Reporting for regulatory compliance
  • Analytics for system tuning
  • Data for warranty validation

Why it matters:

You can understand battery degradation, compare efficiency trends, and improve future deployments.


5. Predictive Maintenance and Asset Health

Advanced SCADA features now include predictive analytics. This involves using data patterns to:

  • Detect battery aging
  • Identify inverter stress points
  • Schedule HVAC maintenance
  • Forecast potential failures

Why it matters:

Rather than reacting to failures, SCADA allows operators to take preventive action, saving cost and avoiding downtime.


6. Integration with EMS and Renewables

Another top SCADA feature is seamless integration with:

Why it matters:

This ensures balanced energy dispatch and helps optimize cost savings across renewable and storage assets.


Final Thoughts: SCADA Features Drive Smarter Energy Storage

In today’s fast-moving energy landscape, SCADA features are the digital foundation of effective BESS management. From remote control to predictive insights, each feature plays a critical role in keeping storage systems smart, responsive, and secure.

As energy demands grow and decentralized systems become the norm, investing in advanced SCADA features isn’t just a good idea—it’s a necessity.

DC Coupled BESS

What is DC Coupled BESS System? Core Components, How It Works & Its Benefits

As the world shifts towards renewable energy, the need for efficient energy storage systems is greater than ever. Battery Energy Storage Systems (BESS) are at the center of this transformation. But not all BESS setups are the same. One important configuration to understand is the DC Coupled BESS. In this blog post, we will explore what it is, how it works, its key components, and why it can be a smart choice for many renewable energy projects.


What is a DC Coupled BESS?

A DC Coupled Battery Energy Storage System (BESS) is an energy storage architecture where both the battery system and solar photovoltaic (PV) panels are connected on the same DC bus, before the inverter. This is different from an AC coupled BESS, where the solar and battery systems are each connected to the AC grid separately via their own inverters.

In simpler terms, in a DC-coupled system, the solar panels and battery share one inverter and connect through a DC/DC converter. This makes the system more efficient, especially in applications where solar generation is paired with energy storage.


Core Components of a DC Coupled BESS System

A typical DC coupled BESS includes the following major components:

1. Solar PV Array

Captures sunlight and converts it into direct current (DC) electricity.

2. DC/DC Converter

This device regulates the voltage between the PV panels, battery, and inverter. It allows maximum power point tracking (MPPT) and enables energy flow between the PV and battery.

3. Battery Pack

Stores excess solar energy for use during periods of low generation or peak demand. Common chemistries include Li-ion (NMC, LFP) and semi-solid batteries.

4. Battery Management System (BMS)

Monitors and protects the battery cells. It manages parameters like voltage, current, temperature, and SoC (state of charge).

5. Hybrid Inverter (DC to AC)

Converts DC electricity from the battery or solar panels into AC electricity for use in homes, industries, or to feed into the grid.

6. Energy Management System (EMS)

Controls the operation of the entire system, optimizing charging/discharging, solar usage, and grid interaction based on pre-set algorithms and real-time conditions.


⚙️ How Does a DC Coupled BESS Work?

Here’s a simplified step-by-step overview of how a DC Coupled BESS operates:

  1. During Daytime with Sunlight:
    • Solar PV generates DC electricity.
    • DC power goes to the DC/DC converter.
    • Part of the energy is used directly by loads (via inverter).
    • Excess energy charges the battery via the same DC bus.
    • Only one DC to AC conversion occurs when sending power to the grid or loads.
  2. During Night or Cloudy Periods:
    • Stored energy in the battery is sent through the inverter to supply the AC load or the grid.
  3. Grid-Tied and Off-Grid Modes:
    • Can function in both modes, depending on the design.
    • Can seamlessly switch between grid usage, solar generation, and battery power based on EMS logic.

Benefits of DC Coupled BESS

DC coupled systems offer several technical and economic advantages over AC coupled ones:

1. Higher Efficiency

  • Fewer conversions (DC-AC-DC in AC coupled vs. just DC-AC here).
  • Reduces energy losses, improving overall round-trip efficiency.

2. Lower Equipment Cost

  • Only one inverter needed.
  • Fewer transformers and conversion stages reduce capital expenditure.

3. Maximized Solar Harvesting

  • Allows solar charging even during grid outages.
  • Can store excess energy that would otherwise be clipped or curtailed.

4. Improved System Integration

  • Easier to integrate solar, battery, and EV charging into one system.
  • Easier to control and manage with centralized EMS.

5. Simpler Grid Interconnection

  • Since everything passes through a single inverter, grid interconnection rules are simpler.
  • Reduces the complexity of interconnection studies and permits.

6. Faster Response Time

  • Direct DC connection between battery and PV allows faster power adjustments in response to load changes or frequency events.

When Should You Choose a DC Coupled BESS?

A DC Coupled BESS is ideal for:

  • New solar + storage installations where both systems are designed together.
  • Remote or off-grid locations where grid stability and efficiency are critical.
  • Microgrid systems requiring smooth integration of multiple power sources.
  • Commercial and industrial setups looking for energy savings and peak load shaving.

However, if you’re retrofitting an existing solar system, an AC coupled system may be easier to implement.


Conclusion

A DC Coupled BESS offers a more efficient, cost-effective, and integrated approach to combining solar and battery storage. By reducing the number of conversions and simplifying system design, it ensures higher performance and better return on investment, especially in new or greenfield projects.

As energy needs evolve and distributed energy resources grow, understanding these architectures becomes critical. Whether you’re a developer, EPC, or energy investor—DC coupled systems could offer you the next level of performance and reliability.